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Abstract The recent process analytical technology (PAT)

initiative has put an increased focus on online sensors to

generate process-relevant information in real time. Specifi-

cally for fermentation, however, introduction of online

sensors is often far from straightforward, and online mea-

surement of biomass is one of the best examples. The purpose

of this study was therefore to compare the performance of

various online biomass sensors, and secondly to demonstrate

their use in early development of a filamentous cultivation

process. Eight Streptomyces coelicolor fed-batch cultiva-

tions were run as part of process development in which the

pH, the feeding strategy, and the medium composition were

varied. The cultivations were monitored in situ using multi-

wavelength fluorescence (MWF) spectroscopy, scanning

dielectric (DE) spectroscopy, and turbidity measurements.

In addition, we logged all of the classical cultivation data,

such as the carbon dioxide evolution rate (CER) and the

concentration of dissolved oxygen. Prediction models for the

biomass concentrations were estimated on the basis of

the individual sensors and on combinations of the sensors.

The results showed that the more advanced sensors based on

MWF and scanning DE spectroscopy did not offer any

advantages over the simpler sensors based on dual frequency

DE spectroscopy, turbidity, and CER measurements for

prediction of biomass concentration. By combining CER,

DE spectroscopy, and turbidity measurements, the predic-

tion error was reduced to 1.5 g/l, corresponding to 6% of the

covered biomass range. Moreover, by using multiple sensors

it was possible to check the quality of the individual pre-

dictions and switch between the sensors in real time.
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Introduction

Real-time measurement of biomass concentration could be

very useful for many cultivation processes. However, despite

the development of a number of promising technologies,

accurate measurement of biomass concentration in real time

remains a significant challenge—particularly for highly

aerated and agitated cultivations of organisms with complex

morphology. The challenges of biomass measurement have

been excellently reviewed by Kiviharju et al. [17], Madrid

and Felice [20], and Olsson and Nielsen [27]. The online

sensors typically applied for biomass concentration mea-

surement include sensors based on dielectric spectroscopy

(DE), software sensors based on classical process monitoring

data, and optical sensors of several kinds: online turbidity

probes, near-infrared (NIR) reflectance and transmis-

sion probes, and multi-wavelength fluorescence (MWF)
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spectroscopy. This study evaluates the use of scanning and

dual frequency DE spectroscopy, simple software sensors,

turbidity, and MWF spectroscopy.

Online turbidity probes are commercially available at a

relatively low price. Turbidity probes measure the absor-

bance of light in a limited range, which may be in the

visible or in the NIR region. Measurements in the NIR

region offer some advantages because colored compounds

do not interfere in this range. In a recent comparison,

Kiviharju et al. [16] concluded that a commercial turbidity

probe measuring in the NIR range was superior to DE

spectroscopy for the measurement of biomass in a range of

bacterial and yeast cultivations. The experiments also

included cultivations with the filamentous organism

Streptomyces peucetius, but the results for the turbidity

probe were not reported. The advantages of the turbidity

probe include robustness, and the fact that optical density is

an established offline measure of biomass concentration.

The main disadvantages are its limited range of linearity,

its sensitivity to interference from air bubbles and partic-

ulate matter, and its dependence on cell morphology, which

is particularly problematic in processes with filamentous

organisms.

Dielectric spectroscopy is based on the charge sepa-

ration across the insulating cell membrane. Online DE

spectroscopy has mainly been used for the monitoring of

biomass concentrations in cultivations with unicellular

organisms [2, 3, 6, 21, 26, 28, 36]. In filamentous sys-

tems, good correlations between biomass concentration

and capacitance have been obtained online in the expo-

nential, transition, and stationary growth phases [24, 31].

However, different correlations between biomass and

capacitance were observed in the biomass decline phase

[24, 31]. Recently, scanning DE spectroscopy has made

it possible to obtain capacitance measurements over a

range of frequencies, which may provide additional

information about the size and distribution of cells. To

our knowledge, this has not previously been applied to

filamentous cultivations. The advantages of DE spec-

troscopy include a broad range of linearity, the selec-

tivity to live biomass, and its insensitivity to other

particulate matter [13]. The main disadvantages are the

effects of changes in the conductivity of the medium and

problems with polarization of the probe, causing noise in

the measurements.

In multi-wavelength fluorescence spectroscopy, a 2D

landscape covering several emission and excitation

wavelengths is measured, which makes it possible to

quantify a number of biological fluorophores, such as

proteins and cofactors in the cultivation broth. MWF

spectroscopy has been used for monitoring of biomass in

a number of studies including both unicellular and fila-

mentous organisms [5, 11, 30]. The main advantages of

MWF spectroscopy are its sensitivity and selectivity

towards fluorescent compounds. Furthermore, under the

right conditions, MWF spectroscopy can provide addi-

tional information about the metabolic state of the

organisms [12]. The use of MWF spectroscopy for the

estimation of biomass concentration depends on the

correlation between the biological fluorophores and the

biomass concentration, which may only be applicable

under certain process conditions [8, 18, 29].

Software sensors based on classical monitoring data,

such as the carbon dioxide evolution rate (CER), the

oxygen uptake rate (OUR), and the base consumption, have

been developed for the estimation of biomass concentra-

tions in a number of cultivation systems [15, 29, 33]. The

CER and base consumption are closely related to the

growth of biomass, but the validity of the predictions is

based on the assumption that the yields are constant or at

least predictable. The advantages of the software sensors

include their low price and the significant amount of

experience and knowledge accumulated on how to analyze

CER and OUR owing to their established use for moni-

toring in the biotechnological industry.

The development of suitable online biomass sensors has

been going on for decades, but as far as we know, most of

the above-mentioned sensors have only found limited

application in the bioprocess industry so far. This illustrates

the difficulty of measuring the biomass concentration and

the high requirements of industry with respect to accuracy,

robustness, and the range of applicability of the sensors.

Different stages of industrial production, such as process

development or large-scale production, present different

requirements for the sensors. The process development,

with its high level of process variation, requires robust

sensors that are quickly calibrated. So far, the majority of

studies concerning online biomass sensors have focused on

measurements in similar processes [7, 16, 22, 24, 26, 36].

A few previous studies have included some process vari-

ation, most commonly different carbon sources and dif-

ferent concentration levels in the medium [3, 11, 15, 29,

33].

The aim of this study was to test and compare some

of the most prominent online biomass sensors in the

development of a filamentous cultivation process. Firstly,

the sensors were calibrated both individually and in

combination in order to compare their performance. The

results are presented on the basis of all of the cultiva-

tions from the process development (eight batches). We

then tested whether a selected biomass sensor could be

calibrated and used for biomass estimation during the

short process development. Furthermore, the biomass

sensor was combined with a simple supervision strategy

to explore whether this could improve the usability of

the sensor.
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Materials and methods

Overview of the cultivations

In total eight cultivations were run as part of a process

development study aimed at improving the antibiotic titer

by changing the medium, pH, and feed mode (Table 1). In

batches A1–4 the batch medium and the feed were solu-

tions of glucose, casamino acids, salts, and vitamins. In the

feed, the nutrient concentrations were multiplied by a

factor of 3 compared to the batch medium except for the

trace metals and vitamins which were only multiplied by a

factor of 2. In batches B1 and B2 the feed was a pure

glucose solution. Hence, the concentrations of amino acids,

salts, and vitamins added at the start of the cultivation

should be enough to support both the batch and the fed-

batch phases. Therefore the amounts added initially cor-

responded to the total amount added in A, i.e., the sum of

what was added initially and what was added with the feed.

In batches C1 and C2, the batch medium and the feed were

the same as in batches B1 and B2, except for a doubling of

the phosphate concentration and a corresponding adjust-

ment of K2SO4 and Na2SO4 to keep levels of K? and Na?

constant. Furthermore, SO4
2- salts were used instead of

Cl- salts to allow in situ sterilization.

Strain and culture conditions

Streptomyces coelicolor A3(2) M145 was used in all the

cultivations and was a kind gift from Mervyn Bibb, John

Innes Centre, Norwich, UK. The strain was preserved as a

spore suspension at -20�C for a maximum of 6 months.

The spore suspension was made by incubating the strain on

MS agar plates [14] for 10 days and harvesting the spores

into 20% glycerol (w/w). The bioreactor was inoculated

with 1 ml/l spore suspension (104 spores/ml), which was

thawed immediately before the inoculation. The cultiva-

tions were carried out in stainless steel bioreactors (BIO-

STAT Cplus 10-3, Sartorius, Melsungen, Germany). The

initial volume was 5 l which was increased to around 9 l at

the end of the fed-batch phase. The bioreactors were

operated at 30�C and pH was controlled at either 5.9 or 6.9.

The aeration rate was kept approximately constant at

1 vvm throughout the cultivations by adjusting the aeration

rate in steps as the volume increased. The agitation was

600 rpm. The feed was started after a sustained drop in the

CER was observed. The feed rate was adjusted to control

the dissolved oxygen concentration according to a prede-

fined profile: ramp from 80 to 20% over the first 48 h of the

fed-batch phase after which the target value remained at

20%. The two different feed modes applied can be

described as ‘‘pulse-pause’’ (constant feed rate interrupted

by pauses of 6 min) or ‘‘continuous’’ (uninterrupted feed-

ing where the feed rate can be changed continuously). The

pulse-pause effect is a patent-protected method known to

reduce the viscosity of the broth through controlled frag-

mentation or morphological control of the biomass (World

patent WO 2003/029439) [4]. To suppress foam formation,

100 ll/l Antifoam 206 (Sigma–Aldrich, St. Louis, MO,

USA) was added at four time points during the cultivations

and additionally if formation of foam was observed. The

batches were stopped when the feed was depleted. Batches

A2 and A4 were terminated earlier, at around 80 h, because

of excessive foaming.

Medium

The composition of the cultivation medium and feed is

summarized in Table 2. The trace metal solution contained

20 mM FeCl3, 10 mM CuCl2, 50 mM ZnCl2, 10 mM

MnCl2, 20 lM Na2MoO4, 20 mM CoCl2, and 10 mM

H3BO4. The vitamin solution contained 50 mg/l biotin,

1 g/l Ca pantothenate, 1 g/l nicotinic acid, 25 g/l myo-

inositol, 1 g/l thiamine hydrochloride, 1 g/l pyridoxine

hydrochloride, and 0.2 g/l para-aminobenzoic acid. All

medium components except glucose, chloride salts, trace

elements, and vitamins were autoclaved in the bioreactor.

Glucose was autoclaved separately with the chloride salts,

and trace elements and vitamins were added to the auto-

claved bioreactor through a sterile filter.

Analytical methods

Dry cell weight (DCW) was determined by filtration of a

known volume of cultivation broth through a preweighed,

predried 0.45-lm-pore-size filter (PESU membrane, Sar-

torius, Melsungen, Germany). The filter was dried for

15 min at 150 W in a microwave oven and the weight gain

of the filter was determined. The measurements were made

in duplicate and a standard deviation of 0.97 g/l was esti-

mated on the basis of the pooled variances. For actino-

rhodin extraction, 1 ml 2 M NaOH was added to 1 ml

Table 1 Process development for antibiotic production in Strepto-
myces coelicolor

Batch Medium pH Feed mode

A1 A 5.9 Continuous

A2 A 6.9 Continuous

A3 A 5.9 Pulse-pause

A4 A 6.9 Pulse-pause

B1 B 5.9 Continuous

B2 B 6.9 Continuous

C1 C 5.9 Continuous

C2 C 6.9 Continuous
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culture broth, the sample was mixed, and the biomass was

separated by centrifugation of the sample at 10,000 g for

5 min. The actinorhodin concentration was determined by

measuring the absorbance of the supernatant at 640 nm,

using an extinction coefficient of 25,320 cm-1 M-1. Par-

ticle size distribution was measured by the laser diffraction

method on a Mastersizer 2000 with a Hydro SM manual

small sample dispersion unit (Malvern Instruments Ltd.,

Malvern, Worcestershire, UK). The dispersions were made

by adding small amounts of cultivation broth to distilled

water in the dispersion unit until a laser saturation of

approximately 12–15% was obtained. The refractive index

of the cell pellets was set to 1.52 and the absorbance to 0.1.

Mie theory was applied for deconvolution of the size dis-

tribution. Three successive measurements were made for

each sample and the average was calculated. The results

were verified by microscopy.

Online data collection

Feed rate, added acid and base (calculated on the basis

of flow rates), weight of feed bottle, temperature, pH,

and dissolved oxygen concentration were logged in Bi-

oPAT MFCS/win (Sartorius, Melsungen, Germany).

Carbon dioxide and oxygen in the off-gas were moni-

tored continuously with an acoustic gas analyzer (Innova

1313 Fermentation Monitor, LumaSense Technologies,

Ballerup, Denmark) and logged in BioPAT MFCS/win.

The classical monitoring data consisted of the following

variables: time, acid added, base added, feed added, CO2

concentration in exhaust, O2 in exhaust, pO2, feed rate,

pH, aeration rate, temperature, volume, OUR, CER,

cumulative CER, cumulative OUR, sqrt(cumulative

CER), sqrt(cumulative CER), derivative of CER, and

cumulative DOT.

Table 2 Overview of the cultivation medium

A B C

Batch medium 10 g/l Bacto casamino acidsa 34 g/l Bacto casamino acidsa 34 g/l Bacto casamino acidsa

15 g/l glucose 10 g/l glucose 10 g/l glucose

10 mM KCl 13 mM K2SO4 8 mM K2SO4

2 mM Na2SO4 4.5 mM Na2SO4

4 mM NaH2PO4 7 mM KH2PO4 16 mM KH2PO4

6.5 mM Na2HPO4 10 mM Na2HPO4

2 mM citric acid 7 mM citric acid 7 mM citric acid

1.25 mM MgCl2 13 mM MgSO4 9 mM MgSO4

0.25 mM CaCl2 0.85 mM CaSO4 0.85 mM CaSO4

20 mM (NH4)2SO4 20 mM (NH4)2SO4

5 ml/l trace metal solution 15 ml/l trace metal solution 15 ml/l trace metal solution

1 ml/l vitamin solution 6 ml/l vitamin solution 6 ml/l vitamin solution

200 ll/l Antifoam 206b 200 ll/l Antifoam 206b 200 ll/l Antifoam 206b

Feed 30 g/l Bacto casamino acidsa 780 g/l glucose 780 g/l glucose

45 g/l glucose

30 mM KCl

6 mM Na2SO4

12 mM NaH2PO4

6 mM citric acid

3.75 mM MgCl2

0.75 mM CaCl2

10 ml/l trace metal solution

2 ml/l vitamin solution

600 ll/l Antifoam 206b

pH control 2 M NaOH 2 M NH4OH 2 M NH4OH

1 M H2SO4 1 M H2SO4 1 M H2SO4

a BD Biosciences, Franklin Lakes, NJ, USA
b Sigma-Aldrich, St. Louis, MO, USA
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Online turbidity was measured with a Fundalux II probe

(Sartorius, Melsungen, Germany) with an optical path of

10 mm and measurement range between 840 and 910 nm.

The probe was introduced directly into the reactor and

connected to the bioreactor control unit. Data were logged

in BioPAT MFCS/win.

Fluorescence spectra were collected with a BioView

spectrofluorometer (Delta, Hørsholm, Denmark), measur-

ing through a borosilicate glass window placed in the lower

part of the bioreactor. Each recorded spectrum was the

average of five scans, with excitation wavelengths ranging

from 270 to 550 nm in steps of 20 nm, and emission

wavelengths ranging from 310 to 590 nm, also in steps of

20 nm. The data were collected in the BioView control

software (Delta, Hørsholm, Denmark). The instrument has

been described previously in detail by Lindemann et al.

[19] and Marose et al. [23].

The dielectric spectroscopic measurements were done

with the Biomass Monitor 220 (Aber Instruments, Aber-

ystwyth, UK). The spectrometer was equipped with a

25-mm-diameter probe containing four electrodes. The

probe was introduced directly into the reactor and sterilized

in situ. During the cultivations, 25 frequencies from 0.1 to

20 MHz were scanned every 1 min and the capacitance as

well as the conductance of the cell suspension were reg-

istered at each frequency. The data were collected and

stored in AberScan (Aber Instruments, Aberystwyth, UK).

Because of the significant level of noise, all data were

smoothed with respect to time using an exponential moving

average given by

Sn ¼ ð1� kÞYn þ kSn�1

where Sn and Sn-1 are the smoothed values at time n and

n-1 respectively, Yn is the measurement at time n, and k is

the smoothing constant. k was set to 0.97 to provide the

best possible smoothing while retaining the dynamics of

the signal.

Data analysis

All data analysis was performed in MATLAB (MathWorks

Inc., Natick, MA, USA) and using the PLS Toolbox for

MATLAB (Eigenvector Research Inc., Wenatchee, WA,

USA). Prior to the analysis, all data sets were checked for

outliers by inspection of principal component analysis

(PCA) scores, Hotelling’s T2, and Q residuals.

The single-variable data (turbidity, cumulative CER, and

dual frequency DE spectroscopy measurements (measured at

465 kHz and 10,085 kHz)) were transformed appropriately

and prediction models for the biomass concentration were

estimated on the basis of a least-squares fit. The multivari-

able data with only two or three variables (combination of

sensors) were modeled with standard multiple linear

regression models. The multivariable data with more than

three variables (dielectric scans, MWF, classical monitoring

data) were modeled using partial least-squares (PLS)

regression with and without variable selection and various

pretreatments of the data. Table 3 summarizes the tested data

pretreatment and variable selection methods. For the MWF

data, the use of subsets of the data for calibration and vali-

dation was also evaluated, thus decreasing the variation by

only including batches with the same pH or medium

(Table 3). In addition, parallel factor analysis (PARAFAC)

was performed on the MWF spectra to identify the contrib-

uting fluorophores. The theoretical Cole–Cole equation was

fitted to the dielectric spectral data (capacitance and con-

ductance) by the method described in [7].

In order to compare the different model types, all model

calibration and validation was performed in the same way

by using a repeated calibration and validation scheme. The

models were calibrated on seven batches and validated on

the remaining batch. This was repeated eight times, each

time leaving a new batch for validation. The root mean

square error of prediction (RMSEP) was calculated for

each batch and finally the mean and standard deviation of

the RMSEP were calculated on the basis of the results for

the eight validation batches.

Results

The eight batches attained final biomass concentrations

ranging from 18 to 41 g/l DCW (Fig. 1a). Seven batches

reached final biomass concentrations between 18 and 26 g/l

DCW whereas the remaining batch (C1) reached 41 g/l

DCW and can be considered as an outlier. A very large

difference between morphologies of the different batches

was observed as indicated by the mean particle diameter of

the cell clumps (Fig. 1b). Furthermore, a change in mor-

phology was observed during each batch. The clump

diameter generally increased in the batch phase. Between

30 and 50 h a population of smaller clumps with diameter

around 100–150 lm appeared. This population continued

to grow with increasing diameter and covering an

increasing percentage of the total biomass volume. Because

of the relative increase in the amount of smaller clumps,

this appears as an overall decrease in the mean particle

diameter (Fig. 1b). The final antibiotic titer varied from

225 to 6,405 mg/l as a result of the process development

work. This illustrates large differences in the secondary

metabolism.

Prediction of biomass concentration

Prediction models for the biomass concentration were

calibrated on the basis of each of the online sensors as well

J Ind Microbiol Biotechnol (2011) 38:1679–1690 1683

123



as combinations of the different sensors. A number of

different approaches (variable selection, data pretreatment,

and partitioning of the data set) were tested for each of the

sensors and the best results were chosen for comparison

with the other sensors (Table 4). The sensors have different

requirements for the calibration data, i.e., the multivariable

sensors generally require more data for calibration because

more parameters have to be estimated. In order to make a

fair comparison between the different sensor types, as a

starting point the results are reported on the basis of the use

of all available batches. In general, the prediction errors

were high for batch C1 and results are also shown without

this batch to facilitate comparison. The results of the

individual sensors are described below.

Software sensors

Software sensors were calibrated on the basis of the

cumulative CER alone and on the basis of PLS regression

of the combined data set (described in ‘‘Online data

collection’’). A linear correlation was found between

biomass concentration and the square root of the

cumulative CER, and a simple linear model was cali-

brated on the basis of these data. Variable selection using

genetic algorithms was tested in combination with PLS

regression of the combined data set. A small improvement

was found by applying variable selection compared with

PLS of the whole data set. However, compared with the

simple model based on cumulative CER, no noteworthy

improvements were found by including additional process

data. The prediction error for the PLS model was

2.2 ± 0.6 g/l compared with 2.0 ± 0.9 g/l for the model

based solely on cumulative CER. In fact, when excluding

C1 and considering the sensors one at a time, the linear

regression of the transformed cumulative CER provided

the lowest average prediction error of the biomass con-

centration (Table 4). A closer look at the predictions

showed that the cumulative CER mainly captured the

overall development of the biomass concentration,

whereas the dynamics of the growth phases was not so

clearly discernable (data not shown). The biomass con-

centration was generally overestimated towards the end of

the batches which may be explained by different biomass/

CER yields in this phase.

Table 3 Overview of pretreatments, variable selection methods, and partitioning of the data tested for modeling of multivariable data

Data Pretreatment Variable selection Partitioning of the data set

MWF spectra No pretreatment Whole spectrum Partition based on pH

Subtraction of first spectrum Genetic algorithms (group 1, A1, A3, B1, C1; group 2,

A2, A4, B2, C2)

Mean centering Partition based on medium (group 1, A1–4;

group 2, B1, B2, C1, C2)

Autoscaling

Classical

monitoring data

No pretreatment Whole data set

Autoscaling Genetic algorithms

Dielectric spectra Subtraction of first spectrum Whole spectrum

Subtraction of measurement at high

frequency (10,085 kHz)

Successive removal of low

frequency points

Fig. 1 Plot of the development

of DCW (a) and mean particle

diameter (b) in batches A1–4,

B1, B2, C1, and C2
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Turbidity

A non-linear correlation was found between the online

turbidity measurements and the biomass concentration and

a second-order polynomial was fitted to the data. The non-

linearity may occur close to saturation of the sensor and/or

may be influenced by changes in the size distribution of the

cell pellets, which tended to first increase in the growth

phase and then decrease in the production phase (Fig. 1b).

Both C1 and C2 showed different correlations between the

biomass concentration and the turbidity measurements. For

C2 this was clearly caused by a significantly smaller pellet

size in this particular batch. For C1 this was most likely

caused by non-linear effects close to saturation of the

sensor. When excluding batches C1 and C2, the online

turbidity sensor provided prediction errors in the same

order of magnitude as DE spectroscopy and the CER

(2.3 ± 1.0 g/l compared with 2.8 ± 0.6 g/l and 2.0 ±

0.9 g/l for DE spectroscopy and CER, respectively.)

Dielectric spectroscopy

The dielectric spectra were very noisy, particularly in the

low frequency range, and they were therefore smoothed

prior to modeling. It was chosen to use a moving average

filter with exponential weights, which is also suitable for

online estimation. The conductivity varied greatly between

the different batches. In batches A1–4, the concentration of

salts was relatively low initially but increased in the fed-

batch phase because of the addition of concentrated med-

ium with salts and acid/base for pH control resulting in an

increase in conductivity from 7–9 to 16–18 mS/cm. Bat-

ches B1, B2, C1, and C2 all started with a high

concentration of salts which then decreased during the

cultivation resulting in a decrease in conductivity from

24–27 to 8–10 mS/cm despite addition of acid/base for pH

control. The biomass concentration was estimated on the

basis of linear regression and PLS regression of the

capacitance data and the fitting of the theoretical Cole–

Cole equation to the capacitance and conductance data

respectively. In all cases the predictions improved when the

measurements at 100–155 MHz were left out (measure-

ments were subject to noise most likely caused by polari-

zation of the probe). The prediction errors for the linear

regression and PLS regression were similar in size

(2.9 ± 1.5 g/l for the PLS model compared with

2.8 ± 0.6 g/l for the linear dual frequency model) and

lower than for the Cole–Cole model (data not shown).

Because the linear model is simpler, the further evaluation

of the DE spectroscopy sensor focuses on the linear dual

frequency model. The DE spectroscopy sensor provided

good predictions in the growth phase capturing the

dynamic development of the biomass concentration

(Fig. 2). Even in batch C1, the capacitance sensor correctly

predicted the fast growth in the fed-batch phase up to 30 g/l

unlike any of the other sensors. However, in most batches

the predicted biomass concentration decreased in the pro-

duction and death phases, although the dry cell weight was

stationary or slowly increasing (Fig. 2). This contributed

greatly to the overall prediction errors.

Multi-wavelength fluorescence spectroscopy

A PARAFAC analysis revealed four major peaks (explain-

ing 98% of the variation in the spectra) at the following

excitation and emission wavelength combinations: 430/470,

Table 4 Comparison of average prediction errors for DCW based on the online sensors

Sensor Model Mean RMSEP ± std (g/l)

All batches

(range 0–41 g/l)

Without batch C1

(range 0–26 g/l)

Turbidity 2nd order polynomial 2.4 ± 1.3a 2.3 ± 1.0a

DE Linear regression of dual frequency 3.2 ± 1.2 2.8 ± 0.6

DE PLS 3.4 ± 1.4 2.9 ± 1.5

CER Linear regression of sqrt(cumulative CER) 3.3 ± 2.4 2.0 ± 0.9

Classical monitoring data PLS and variable selection with GA 3.4 ± 1.2 2.2 ± 0.6

MWF PLS 5.9 ± 3.3 4.6 ± 2.4

Sqrt(cumulative CER), squared turbidity,

dual frequency DE

Multiple linear regression 1.7 ± 0.6a 1.5 ± 0.4a

Sqrt(cumulative CER), dual frequency DE Multiple linear regression 2.3 ± 1.6 1.6 ± 0.3

The mean and standard deviations of the RMSEP were calculated on the basis of the repeated model calibration and validation (see ‘‘Data

analysis’’)
a Without batch C2

J Ind Microbiol Biotechnol (2011) 38:1679–1690 1685

123



380/450, 430/530, and 330/390 nm. The loading profiles of

factor 2, 3, and 4 correlate well with the profiles of

NAD(P)H, flavin nucleotides, and pyridoxine, respectively

[10, 30] (Food Fluorescence Library, www.models.life.

ku.dk). In most batches the intensity of the peaks increased

from the beginning of the batch to around 30–45 h, after

which the intensity decreased to a stationary level towards

the end of the batch. Thus the signal was not immediately

correlated to the biomass concentration. This effect may be

the result of a drastic decrease in the concentration of bio-

logical fluorophores in the cell mass or/and some quenching

effect or inner filter effect of the broth. It was chosen to use

PLS regression of the unfolded spectra based on previous

results from Ödman et al. [30]. Models were calibrated with

mean centering or autoscaling (to zero mean and unit vari-

ance) of the spectra prior to the analysis. Furthermore, dif-

ferent partitions of the data set were tested along with

variable selection using genetic algorithms (Table 3). The

best results were obtained by dividing the data into two sets

on the basis of the pH, autoscaling the data, and applying

genetic algorithms for variable selection. However, on

average for both subsets the RMSEP obtained with the MWF

sensor (4.6 g/l) was higher than the RMSEPs obtained with

the other sensors (2–2.9 g/l).

Combination of sensors

On the basis of the results we chose to test a combination of

dual frequency DE spectroscopy and sqrt(cumulative CER)

as well as dual frequency DE spectroscopy, sqrt(cumula-

tive CER), and the squared turbidity using multiple linear

regression. Both combinations of the sensors resulted in a

lowering of the prediction error and the combination of

sqrt(cumulative CER), dual frequency DE spectroscopy,

and the squared turbidity provided the lowest prediction

error of all sensors (Table 4). The prediction error was thus

reduced to 1.5 g/l corresponding to 6% of the covered

range of biomass concentrations. This combination was

therefore chosen to test the use of an online biomass sensor

and supervision strategy during process development

described below.

Development and use of online biomass sensor

during process development

The results described thus far show a comparison of the

biomass sensors based on the average prediction errors for

all of the available batches. In this section we explored

whether the sensors can be used during the short process

development.

The univariable sensors based on measurements of CER,

dual frequency DE spectroscopy, and turbidity only require

little data for calibration. It was therefore possible to cal-

ibrate a biomass sensor on the basis of these signals solely

using data from batches A1 and B1. This model was sub-

sequently used to predict the biomass concentration in the

remaining batches. The predictions were computed along

with a 95% confidence interval of the predictions. A simple

supervision strategy was implemented on the basis of the

Hotelling’s T2. The Hotelling’s T2 value was calculated for

each measurement point along with the 99% confidence

interval on the basis of the calibration data. A Hotelling’s

T2 value outside the confidence limits indicated that the

measurement point was different from the calibration data,

and that the sensor estimations should be checked. In

addition, the maximum specific growth rate was estimated

on the basis of the estimated biomass concentrations.

The estimation of the multiple linear regression model

resulted in an R2 of 0.98 which showed that the major part

of the variation in biomass concentration in the two cali-

bration batches was captured by the model. The biomass

concentration was predicted well in batches A2, A3, and

A4 (Fig. 3). In batches B2 and C2 the Hotelling’s T2 values

rose above the 99% confidence interval in periods of the

cultivation which are indicated by the shaded area (Fig. 4

left). The calculation of the estimated biomass concentra-

tion and the Hotelling’s T2 is only dependent on the latest

output from the sensors. These calculations can therefore

easily be performed online which provides the opportunity

to adjust the predictions in real time. A closer look at the

individual measurements of CER, turbidity, and DE spec-

troscopy revealed that the turbidity was larger compared

with the measurements of the other two sensors in batches

B2 and C2. By switching to the model based only on CER

and DE spectroscopy measurements, it was possible to

change the predictions (Fig. 4 right). In batch B2, the effect

of the sensor change was small but in C2, the predictions

Fig. 2 Measured and predicted DCW based on dual frequency DE

spectroscopy in batch C1
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were improved significantly. For C1 the Hotelling’s T2 rose

above the confidence interval around t = 50 h (Fig. 5). A

closer look at the individual measurements showed that the

capacitance measurements were significantly higher than

the two other measurements. However, by experience the

capacitance measurements are very accurate during growth

and thus we chose not to change the model. However, the

high Hotelling’s T2 values serve as a warning that the

predictions may not be trusted and additional offline sam-

ples can be taken to check the predictions of the model.

Discussion

Multivariable sensors

Comparison of the online sensors over a wide range of

process conditions showed that the detailed information

provided by the advanced sensors based on MWF and

scanning DE spectroscopy did not provide better predic-

tions of the DCW than the simpler sensors based on CER,

turbidity, and dual frequency DE spectroscopy. Using

MWF, Ödman et al. [30] obtained good results for the

prediction of biomass concentration in Streptomyces

coelicolor cultivations over a relatively wide range of

process conditions. However, under the increased process

variation imposed in our experiments, a characteristic of

most process development studies in laboratories or pilot

plants, MWF failed to produce reliable estimations of the

DCW. This may be explained by the differences in pH,

which are known to have a large effect on the fluorescent

properties of fluorophores [34]. Moreover, cell metabolism

varied greatly in the batches as observed from the growth

curves and the antibiotic production. Thus it is likely that

the correlation between DCW and the biological fluoro-

phores such as NAD(P)H and flavins was not the same in

all batches. Finally, the great variation in growth and sec-

ondary metabolism may result in different levels of

quenching or/and inner filter effects, making it more dif-

ficult to correct for these.

For DE spectroscopy, Dabros et al. [7] found it advan-

tageous to use the full spectrum for prediction of biomass

concentration under noisy conditions caused by interference

from reactor components in small-scale reactors. We did

not come to a similar conclusion, and the explanation for

this may be either the substantial smoothing applied prior to

modeling in our work or smaller noise levels. Overall it is

likely that the more advanced sensors will perform better

Fig. 3 Predictions of DCW

based on CER, DE, and

turbidity measurements in

batches A2 (a), A3 (b), and A4

(c)
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under less varying process conditions, where they have

the potential to provide additional information, e.g., about

cell metabolism or cell morphology [7, 12, 32]. The more

advanced sensors could, for example, be implemented

during the later stages of process development where only

smaller changes are made to the protocol.

Univariable sensors

Predictions of the biomass concentration based on the

online turbidity measurements are influenced by the mor-

phology of the cells because the scattering properties are

related to particle size and shape [35]. Nonetheless, the

predictions of the biomass concentration were relatively

accurate over a wide range of morphologies. In fact, large

prediction errors mainly occurred in batch C2, in which the

morphology of the cells was significantly different from the

other batches (Fig. 1b).

Dual frequency DE spectroscopy provided accurate

predictions of the DCW during growth, but generally gave

relatively large prediction errors in the production and

death phases. This is in agreement with previous observa-

tions in filamentous systems [24, 31] and in cell cultures,

where the effect was partly attributed to decreases in cell

viability, decreases in cell size, changes in the intracellular

conductivity, and changes in the capacitance-per-unit

membrane area [1, 2, 25, 28]. Alternatively, the effect

might have been caused by changes in the ratio between

cell mass and cell volume, because capacitance is propor-

tional to the cell volume [13].

The prediction of biomass concentration based on the

CER is an indirect method, which is based on the

assumption that the biomass/carbon dioxide yield is con-

stant. However, the predictions of biomass concentration

Fig. 4 Predictions of DCW

based on CER, DE, and

turbidity measurements for

batches B2 and C2. a, c Original

predictions based on CER, DE

spectroscopy, and turbidity

measurements. The gray shaded
areas show the time intervals in

which the Hotelling’s T2 values

were above the 99% confidence

interval, which indicate

measurements that are

dissimilar to the calibration

data. b, d Predictions resulting

from the switch between two

different sensors: In the first part

predictions are based on CER,

DE spectroscopy, and turbidity

and after the switch, marked by

the vertical line, predictions are

based on CER and DE

spectroscopy

Fig. 5 Predictions of DCW based on CER, DE spectroscopy, and

turbidity measurements in batch C1. The gray shaded areas indicate

the periods in which the Hotelling’s T2 was above the 99% confidence

interval
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based on CER were robust over a relatively wide range of

process variation. In fact the sensor based on CER per-

formed as well as or better than the more direct sensors

over the range covered by the batches A1–4, B1, B2, and

C2.

Although the DE spectroscopy and the turbidity sensors

directly measure a physical property of the biomass, the

prediction of DCW is still based on correlations which are

subject to changes caused by differences in morphology,

cell viability, etc. It can be discussed whether the DCW is

the best measure of biomass concentration because it does

not differentiate between viable or dead cell mass. In some

applications it may be that the information provided from

the online sensors is actually a better measure of biomass,

for example, dielectric measurements of viable biomass [9,

24]. However, in this study, it was important to use one

established measure of biomass concentration as a refer-

ence to facilitate the comparison. When the advanced

biomass sensors have won wider acceptance in industry, it

is likely that the sensor measurements will be used directly

as a measure of biomass concentration.

Combination of sensors

The CER, DE spectroscopy, and turbidity measurements

can all be used individually to provide relatively accurate

estimations of DCW over a wide range of process condi-

tions. However, the predictions were improved by com-

bining the three different sensors measuring different

properties of the biomass, thus creating a positive averag-

ing effect. Furthermore, differences between the sensor

signals may provide additional information. Because the

DE spectroscopy signal reflects the amount of viable bio-

mass and the two other sensors measure total biomass, a

combination of the sensors can be used to calculate the

ratio between living and dead cells in real time. Similarly, a

discrepancy between the predictions based on DE spec-

troscopy and CER on the one hand, and the turbidity probe

on the other hand, suggests a different morphology,

whereas differences between predictions based on CER and

the other signals suggest changing yields. Finally, the use

of multiple sensors makes it possible to check the indi-

vidual predictions and make adjustments online, as was

demonstrated in the last part of the results section. A

combination of sensors has previously been used for the

estimation of biomass concentration in cultivations. Using

advanced data reconciliation, Dabros et al. [6] combined

DE spectroscopy, off-gas analysis, and mid-infrared spec-

troscopy for the prediction of biomass and metabolite

concentrations in Saccharomyces cerevisiae cultivations

under more defined process conditions. Our results have

shown that a simple combination of sensors is advanta-

geous under more varying process conditions.

Application in process development

Process development represents a very important area for the

application of online sensors in industry. The online sensors

can provide information about the process dynamics which

may be of high value in process optimization. Furthermore,

the process variation will generate valuable experience and

help to establish the range of validity of the sensors. How-

ever, the high level of variation requires very robust sensors.

We have demonstrated that a biomass sensor based on

measurements of CER, dual frequency DE spectroscopy, and

turbidity can be calibrated and subsequently used to provide

reliable biomass measurements during a short process

development. Its usability was further improved by combi-

nation with estimated confidence intervals of the predictions

and calculated Hotelling’s T2 values, which provided infor-

mation about the reliability of the predictions. This allowed

the supervision of the sensor and presented the option of

switching between individual sensors in real time. Biomass

measurements can, for example, be used to estimate the

specific growth rate online, as was also demonstrated.

Conclusion

The aim of this study was to compare some of the most

prominent online biomass sensors during the development of

a filamentous cultivation process. The results showed that the

more robust univariable sensors (based on measurements of

CER, turbidity, or dual frequency DE spectroscopy) pro-

vided better or no worse predictions of DCW than the more

advanced multivariable sensors (based on MWF spectros-

copy, scanning DE spectroscopy, multivariable modeling of

classical monitoring data). Furthermore, it was shown that a

combination of the sensors reduced the average and the

standard deviation of the prediction errors (from 2.0 ± 0.9 to

1.5 ± 0.4 g/l) and provided a means of checking the sensor

in real time, thus allowing operator intervention. Finally, it

was shown that the biomass sensor could be calibrated and

subsequently used to provide reliable biomass measurements

during a short process development. This study has therefore

increased our knowledge of the application of online bio-

mass sensors under more challenging conditions, such as

those observed during early process development. The pro-

cess development stage represents a large potential for future

applications of online sensors in industry.
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